Model **PC1U-300P-E2S** Created: May 31, 2006

Scope

This specification applies to Embedded type DC stabilized power supply PC1U-300P-E2S.

Items in the specification shall be provided at normal temperature and humidity unless otherwise specified.

General Specification

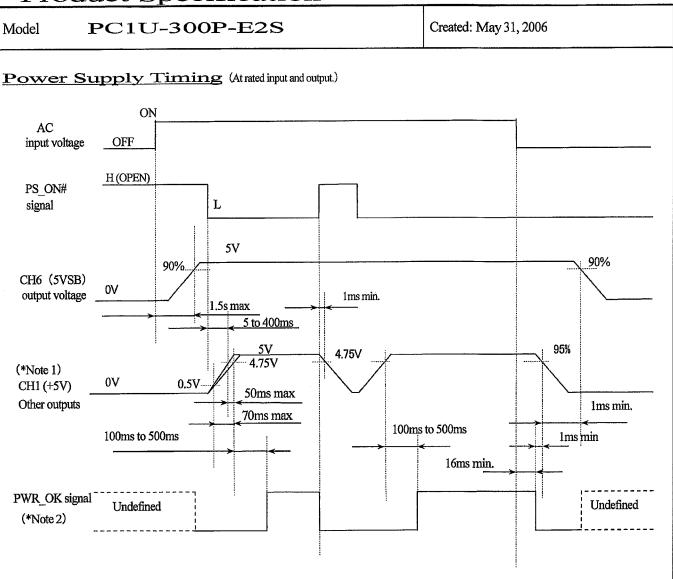
| <u></u>             | eneral Specia                           |                                                                                                          |                                                                  |
|---------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                     | Items                                   | Specification/Standard                                                                                   | Measurement conditions, etc.                                     |
|                     | Rated voltage                           | AC100 to 240V                                                                                            | Worldwide range                                                  |
| Input Specification | Voltage range                           | 85 (Note 1) to 264V                                                                                      |                                                                  |
| Ē                   | Input current                           | 3.4A typical at 100V input/1.4A typical at 240V input.                                                   |                                                                  |
| 설                   | Rated frequency                         | 50 and 60 Hz                                                                                             | Frequency range: 47Hz to 63Hz                                    |
| E:                  | Inrush current                          | 31A peak or less at 100V input.                                                                          | At rated output. Reclosing interval is 10 seconds                |
| 8                   | (Note 2)                                | 75A peak or less at 240V input.                                                                          | minimum with Cold start (25°C).                                  |
| (D)                 | Power factor                            | 96% typical at 100V input/90% typical at 240V input                                                      | At rated output.                                                 |
|                     | Efficiency                              | 73% typical at 100V input/77% typical at 240V input                                                      | •                                                                |
|                     | Operating temperature/humidity          | 0 to 60°C ( <i>Note 3</i> )/10 to 90%RH                                                                  | There shall be no condensation.                                  |
| ঘ                   | Storage temperature/humidity            | -20 to 70°C/10 to 95%RH                                                                                  | There shall be no condensation.                                  |
| <u>  ≧</u> .        | Vibration                               | To endure acceleration of 2G with a vibration frequency of 10 to 55Hz for                                | JIS-C-60068-2-6                                                  |
| 1 E                 | Violauon                                | 10 sweep cycles in the X, Y, and Z-direction for each                                                    | At no operation,                                                 |
| Environment         | Mechanical shock                        | Lift one bottom edge of the unit up to 50 mm high with the                                               | ЛS-C-60068-2-31                                                  |
| Ħ                   | (Surface dropping)                      | opposite edge placed on the test bench, and let it fall. Repeat 3                                        | At no operation.                                                 |
|                     |                                         | times for each base and no malfunction shall be observed.                                                | •                                                                |
| Ħ                   | Insulation resistance                   | 50MΩ or more between input and FG/output.                                                                | With DC500V                                                      |
| Insulation          | Dielectric withstand                    | AC1.5kV for one minute between input and FG/output                                                       | Cut-off current is 20mA                                          |
|                     | T coleage grownest                      | 0.5mA or less at 100V input/1mA or less at 200V input/                                                   | YEW. TYPE3226 ( $1k\Omega$ ) or equivalent                       |
| B                   | Leakage current                         | 1.2mA or less at 240V input.                                                                             | ` ' *                                                            |
|                     | Line noise immunity                     | Apply $\pm 2000 \text{V}$ with pulse width of 100ns and 1000ns,                                          | To be measured with INS-410. There shall be                      |
|                     | test                                    | cycle period of 30 to 100Hz, and normal/common mode with positive/negative polarity for 10 minutes each. | no fluctuation of DC-component in output voltage or malfunction. |
|                     |                                         | IEC 61000-4-5 Installation Environment Class 3                                                           | There shall be no malfunction or breakdown                       |
| Е                   | Surge immunity test                     | compliant. Apply five times each of $\pm 2kV$ common                                                     | (at AC100V/240V input).                                          |
| M                   |                                         | mode and ±1kV normal mode.                                                                               |                                                                  |
| S                   | Electrostatic discharge                 | IEC 61000-4-2 Test Level 3 compliant.                                                                    | There shall be no malfunction or breakdown                       |
| 1:                  | immunity test                           | ±6kV contact discharge for 10 times.                                                                     | (at AC100V/240V input).                                          |
| E                   | Conducted emission                      | VCCI/FCC/CISPR22-B/EN55022 Class B compliant.                                                            | To be measured with the power supply single                      |
| M                   | TT .                                    | TEG (1000 2 0 G1 - D 1' 1                                                                                | body.                                                            |
| I                   | Harmonic current                        | IEC 61000-3-2 Class D compliant.  UL60950, CSA 60950 (c-UL), and EN60950 acquired. The                   | At rated input and output.                                       |
| 1                   |                                         | electrical Appliance and Material Safety Law compliant. CE                                               | Class I equipment                                                |
|                     | Safety standard                         | marking (Low Voltage Direction)                                                                          | Embedded type power supply                                       |
|                     |                                         | CCC(S&E) acquired                                                                                        | Only a product after REV.B is acquired.                          |
|                     | Cooling system                          | Forced air cooling                                                                                       | (Note 4)                                                         |
|                     | Dimensions                              | 106(W)×41(H)×260(D)                                                                                      | Excluding projections. See the outline drawing on                |
| Q                   | Dimensions                              | 100(W)^41(H)^200(D)                                                                                      | another page.                                                    |
| Others              | Weight                                  | 1,25kg typical                                                                                           |                                                                  |
| οş                  | Reliability grade                       | FA                                                                                                       | To follow our standard.                                          |
|                     | Lifetime expectancy                     | 10 years minimum (components with short lifetime                                                         | Under the condition that the unit continuously                   |
|                     | -                                       | expectancy: electrolytic capacitor and fan motor).                                                       | operates at 100V AC input, Rated load, and 25°C.                 |
|                     | M.T.B.F.                                | 70,000 hours minimum                                                                                     | Based on EIAJ RCR-9102.                                          |
|                     | Warranty                                | Three years after delivery. However, if any faults belong to us, the                                     | Except for errors caused by operation not                        |
|                     | *************************************** | defective unit shall be repaired or replaced at our cost.                                                | specified in the specification.                                  |
|                     | 4 3 41 3 4 . 4.                         |                                                                                                          | 1 11 1 .3 1 .1 .1 .1                                             |

Note 1. Minimum input voltage at continuous rated load. For minimum input voltage at momentary peak rated load, see the derating conditions on another page.

Note 2. In rush current of  $100\,\mu$  s or less into X-capacitor of input noise filter is not specified.

Note 3. When the ambient temperature exceeds  $40^{\circ}$ C, follow the derating conditions on another page.

Note 4. Fan motor rotates at low speed at standby mode (at PS\_ON signal 'H' or 'OPEN') in order to prevent reliability deterioration earsed by the temperature rise of the components inside the power supply. Fan motor may stop rotating at the low temperature inside the supply.


|      |      | 1           |    |      |      |             |    |
|------|------|-------------|----|------|------|-------------|----|
|      |      |             |    |      |      |             |    |
| REV. | Date | Description | Ву | REV. | Date | Description | Ву |

| Drawn by | Checked by | Approved by | Drawing No.   | Sheet No. |
|----------|------------|-------------|---------------|-----------|
| Mori     | Ishikawa   | arino       | 6124-01-4-521 | 1/8       |

Nipron Co., Ltd.

| Mo               | del               | PC1U-                                 | 300                                           | P-E              | 2S               |                | . 111.44         |                                                      | Created: May 31, 2006                                                                          |  |  |
|------------------|-------------------|---------------------------------------|-----------------------------------------------|------------------|------------------|----------------|------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| $\overline{O}_1$ | utr               | out Specifi                           | catio                                         | 171. (Voltag     | e shall be mea   | sured at outpu | it connector to  | erminal. Voltage                                     | drop of the load side connector due to contact resistance is not included)                     |  |  |
|                  |                   | Items                                 | CH1                                           | CH2              | СНЗ              | CH4            | CH5              | CH6                                                  | Measurement conditions, etc.                                                                   |  |  |
| Т                | Dota              | ed voltage (V)                        | +3.3                                          | +5               | (12V1)<br>+12    | (12V2)<br>+12  | -12              | (5VSB)<br>+5                                         |                                                                                                |  |  |
| ŀ                |                   | imum current (A)                      | 0                                             | 0                | 0                | 0              | 0                | 0                                                    |                                                                                                |  |  |
| ŀ                |                   | Rated current (A)                     | 8                                             | 8                | 8                | 6              | 0.5              | 2                                                    | Standard value at measuring of input/output characteristics. Ratec                             |  |  |
|                  | Rating            | Rated power [W]                       | 26.4                                          | 40               | 96               | 72             | 6                | 10                                                   | total output power is 250W (see the derating conditions on page 5).                            |  |  |
| ŀ                |                   | Max. current (A)                      | 16                                            | 14               | 16               | 10             | 0.5              | 2                                                    | total output porter in 20011 (accurate and constitution on page 17).                           |  |  |
|                  | Continuous max    | Iviax. current (A)                    | 52.8                                          | 70               | 192              | 120            | 0.5              |                                                      | Continuous rating. Maximum total output power is 250W                                          |  |  |
| ;                | ousma             | Max. output power                     | 32.6                                          |                  | <del> </del>     | 16             | 6                | 10                                                   | (see the derating conditions on page 5).)                                                      |  |  |
| ٠                | Crading:          | (w)                                   |                                               |                  | otal shall b     |                | less             | <u> </u>                                             | (coordinate and page 1))                                                                       |  |  |
| }                |                   | Momentary current (A)                 | 16                                            | 16               | 22               |                | 0.8              | 2.5                                                  | Momentary rating is within 5 seconds. Momentary total                                          |  |  |
|                  | fomant            | With Kindly Curent (45)               | 52.8                                          | 80               | 264              | _              | 0.0              | 2.0                                                  | output power is 300W. For repetitive momentary loads, dut                                      |  |  |
|                  | Monoray max sting | Momentary output                      | 10                                            |                  |                  | <br>64         | 9.6              | 12.5                                                 | ration shall be 10% or less (see Figure 1 below and derating                                   |  |  |
|                  | g.                | power (W)                             | <u></u>                                       |                  | lotal shall b    |                | less.            | l                                                    | conditions on page 5). 0.5 second or less for CH3 only.                                        |  |  |
| +                | <del></del> .     | <u> </u>                              |                                               | 1                |                  | 2230 17 01     |                  |                                                      | Accuracy against output voltage value including temperatur                                     |  |  |
|                  | Total             | l voltage accuracy [%]                | ±5                                            | ±5               | ±5               | ±5             | ±5               | ±5                                                   | and time-lapse drifts as well as input/load regulation 1 above.                                |  |  |
| 1                | Pinn              | ole voltage [mVp-p]                   | 50 max.                                       | 50 max.          | 80 max.          | 80 max.        | 80 max.          | 50 max.                                              | Connect an electrolytic capacitor $(10 \mu F)$ and a ceramic capacitor $(0.1 \mu F)$ on the te |  |  |
|                  |                   |                                       | JO Max.                                       | Jonac            | OODEL            | OO MALE.       | OUMER            |                                                      | board and measure with an oscilloscope of 100MHz bandwidth. The test board shall               |  |  |
|                  | Kıpp<br>(m        | ole + spike voltage<br>Vp-p]          | 100 max.                                      | 100 max.         | 200 max.         | 200 max.       | 200 max.         | 100 max.                                             | be separated from load wire's and within 150mm from the output terminals.                      |  |  |
| ┪                |                   |                                       | Hold-down current limiting: CH1 to 5 to Hold- |                  |                  | Hold-down c    | urrent limiting: | When CH6 is shorted, all outputs shut down (automati |                                                                                                |  |  |
| 8                | Method            | shut down                             |                                               | <i>O</i>         |                  |                | s shut down      | recovery) .                                          |                                                                                                |  |  |
|                  | OCP/Short circuit |                                       |                                               |                  |                  |                | Short circuit    | Short circuit                                        | In measuring CH3 and CH4, other CHs are no loads. In measurin                                  |  |  |
| hortcarc         | nt cairca         | OCP point [A]                         | 17 or more                                    | 17 or more       | 17 or more       | 12 or more     | protection       | protection                                           | the rest of the CHs, they shall be rated of load                                               |  |  |
|                  | 料                 | Recovery                              | Reclosing or                                  | f imput (reclosi | ing interval: 10 | s or more).    | Automatic        | recovery (*1)                                        | *1. For CH5: or reclosing of input                                                             |  |  |
|                  | 9                 |                                       | 3.76                                          | 5.74             | 13.4             | T T            |                  |                                                      |                                                                                                |  |  |
| 7                | Over Voltage      | OVP point (V)                         | to 4.3                                        | to 7.0           | to 15.6          | _              |                  | -                                                    |                                                                                                |  |  |
|                  | age Pro           | System                                | CH1toC                                        | H5 outputs :     | shut down        |                | _                | Zener                                                |                                                                                                |  |  |
|                  | bation            | Recovery method                       |                                               |                  | of input (*2     | 2)             | _                | clamp                                                | *2. Reclose input after at least 10 seconds.                                                   |  |  |
| ŀ                | Low               | v voltage lock-out                    |                                               |                  | hut down w       | <u></u>        | out is 80V o     | or less.                                             |                                                                                                |  |  |
| ŀ                | Insul             | lation between GND terminal           |                                               |                  | ection is co     |                |                  |                                                      | Connected to power supply's chassis.                                                           |  |  |
| <br>?io          |                   | ch output<br>. Duty ratio for momenta | ry max of o                                   |                  |                  |                |                  |                                                      | Figure 2. Definition of ripple and spike                                                       |  |  |
| _                |                   | ary maximum output cur                |                                               | _                | _                | nds.           |                  |                                                      | Figure 2. Definition of applic and spike                                                       |  |  |
|                  |                   | titive loads, duty ratio sha          | •                                             |                  |                  |                |                  | _                                                    |                                                                                                |  |  |
|                  |                   | t ≦5 s                                |                                               |                  | 3 : <b>t</b> ≦(  | ) 5 cacon      | 1                |                                                      | <b>↓</b>                                                                                       |  |  |
|                  |                   | t ≦5 so<br>t/T≦0.:                    |                                               |                  | t/T≦             |                | *                |                                                      | $\bigvee_{v_1} \bigvee_{v_2} v_2$                                                              |  |  |
|                  |                   |                                       | •                                             |                  |                  |                |                  |                                                      | ↓                                                                                              |  |  |
|                  |                   |                                       |                                               |                  | _                |                |                  |                                                      |                                                                                                |  |  |
|                  |                   | <del>&gt;  ⟨ t</del>                  |                                               |                  |                  |                |                  |                                                      | Ripple: V1 (p-p) Spike: V2 (p-p)                                                               |  |  |
|                  |                   | <u>← T</u>                            | $\longrightarrow$                             |                  |                  |                |                  |                                                      | 世 <b>义</b>                                                                                     |  |  |
|                  |                   |                                       |                                               |                  |                  |                | _                |                                                      | (株)ニプロン・技                                                                                      |  |  |
|                  | +                 |                                       |                                               |                  |                  |                | +                |                                                      |                                                                                                |  |  |
| ΈV               | 7.                | Date                                  | De                                            | escription       |                  | В              | y REV            | Date                                                 | Description By                                                                                 |  |  |
| ١                | Dra               | wn by Check                           | ed by                                         | Approv           | ed by            | Drawing        | No.              |                                                      | Sheet No.                                                                                      |  |  |
|                  |                   |                                       |                                               |                  |                  | (              | 6 1 <b>2</b>     | 4 — 0                                                | 1-4-521 2/8                                                                                    |  |  |
| - 1              |                   |                                       |                                               |                  |                  |                | ron Co           | ikawa arino 6124-0                                   |                                                                                                |  |  |

| Iodel                                                                                                                                                                                                               | PC                                            | 1U-300P-E2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |      | C           | Created: May 31, 2006                                                                 |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-------------|---------------------------------------------------------------------------------------|-----------|
| ig                                                                                                                                                                                                                  | nal Inpu                                      | /Output Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation        |      |             |                                                                                       |           |
|                                                                                                                                                                                                                     | Items                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Sp   | ecification |                                                                                       |           |
| PS_ON  CH1 to 5 are output upon receipt of 'L'.  CH1 to 5 shut down upon receipt of 'H' or 'OPEN'.  Input terminal for Voltage detection of CH1 (+3.3V) output to compensate the voltage drop of + side cable by or |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      |             |                                                                                       |           |
| )<br> <br>                                                                                                                                                                                                          | +3.3V SENSING                                 | Input terminal for Voltage detection of<br>+ side load end. (Refer to "current ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •            | -    | -           | the voltage drop of $+$ side cable by connecting to on page 6 and 7) $$ .             | o the     |
|                                                                                                                                                                                                                     | PWR_OK                                        | 'H' signal is delivered when CH2 (+5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V) output is | ON.  |             |                                                                                       |           |
| Output                                                                                                                                                                                                              | FAN_M1<br>FAN_M2                              | Two pulse waves are delivered per on or 'OPEN' when the fan stops operati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |      | Duty ratio  | for the pulse shall be 0.5 (typical). The signal remains                              | ains 'L'  |
|                                                                                                                                                                                                                     | PS_O                                          | N signal input circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |      |             |                                                                                       |           |
|                                                                                                                                                                                                                     | Inside +5V                                    | 7SB Outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |             |                                                                                       |           |
|                                                                                                                                                                                                                     | 5.6k<br>5.6k                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      |             |                                                                                       |           |
|                                                                                                                                                                                                                     | 711 711                                       | $\begin{array}{c c}  & & & & & & & & & \\ \hline V_o & & & & & & & \\ \hline V_o & & & & & & \\ \hline V_o & & & & & & \\ \hline V_o & & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      |             |                                                                                       |           |
| ···········                                                                                                                                                                                                         | PWR_0                                         | DK signal output circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |      | FA          | AN M signal output circuit                                                            |           |
|                                                                                                                                                                                                                     | Inside $+5$ V ${\triangleright}$ 1 k $\Omega$ | ${\bf Outside}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      | In          | side Outside $+5 \text{VSB}$ $I_{\text{in}} \rightleftharpoons 4.7 \text{ k } \Omega$ |           |
|                                                                                                                                                                                                                     | Q1 V                                          | $\begin{array}{c c} & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\$ |              |      | Q1 -        | $V_0 \qquad \text{At Q1 on} $ $I_{in} \leq 5mA$ $V_0 \leq 0.8V$                       |           |
|                                                                                                                                                                                                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      |             |                                                                                       | <u> </u>  |
|                                                                                                                                                                                                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      |             | (株)ニプロン                                                                               | ━<br>៸・技' |
|                                                                                                                                                                                                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      |             |                                                                                       |           |
| REV.                                                                                                                                                                                                                | Date                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ву           | REV. | Date        | Description                                                                           | Ву        |
| Dr                                                                                                                                                                                                                  | awn by Cl                                     | ecked by Approved by Dra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wing No.     |      |             | Sheet No.                                                                             |           |
|                                                                                                                                                                                                                     | Mori ]                                        | shekand arino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 1          | 24-  | -01         | -4-521 3/8                                                                            |           |
| 1                                                                                                                                                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nipron       |      |             |                                                                                       |           |



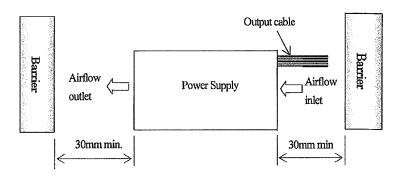
\*Note 1: Outputs other than CH 2 (+5V) shall follow this except for the voltage value, and difference in rise time from CH 2 (+5V) shall be 50m or less. In addition, output voltage level of CH2 (+5V) and CH3 (+12V) shall be at or above that of CH1 (+3.3V). Also, difference in output voltage level between CH2 (+5V) and CH1 (+3.3V) shall be 2.25V or less. However, order and difference in level of output voltage for each output voltage at falling shall not be specified.

\*Note 2: Rise time and fall time of PWR\_OK signal shall be  $100~\mu$  s or less (provided that capacitive load is not connected to PWR\_OK signal output).

|      |      |             |    |      |      | L           |       |
|------|------|-------------|----|------|------|-------------|-------|
|      |      |             |    |      |      | 株・コプ        | ロン・技質 |
|      |      |             |    |      |      |             |       |
| REV. | Date | Description | Ву | REV. | Date | Description | By    |

| Drawn by | Checked by | Approved by | Drawing No.   | Sheet No. |
|----------|------------|-------------|---------------|-----------|
| Mori     | Ish/kawa   | arino       | 6124-01-4-521 | 4/8       |

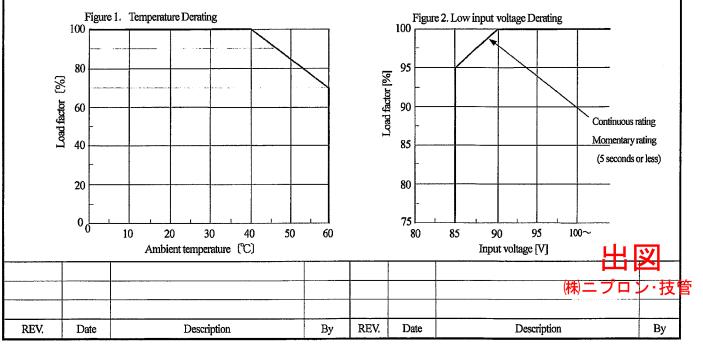
Nipron Co., Ltd.


Model PC1U-300P-E2S

#### Installation

1. When installing the power supply, make sure that the distance between airflow-inlet/outlet of this unit and the adjacent barriers keeps the dimensions below at minimum.

Created: May 31, 2006


2. Make sure to install the power supply in a position where temperature near the airflow inlet does not exceed the maximum operating temperature specified.



### **Derating Conditions**

When using under high temperature or at low input voltage, follow the item 1 and 2 below to derate output current/power. For continuous rating, however, max. output current for each CH specified in the "output specification" including +5VSB shall be 100% of load factor. Also, total of max. output current of CH1 and 2, and CH3 and 4, and total of max. output power of CH1 to 6 shall be 100% of load factor. In the same way, momentary output current value for each channel shall be 100% of load factor. Also, total of momentary output current of CH1 and 2, and CH3 and 4, and total momentary output power of CH 1 to 6 shall be 100%. of load factor.

- 1. When the ambient temperature around the airflow inlet exceeds 40°C, both continuous and momentary ratings shall follow the derating curve in Figure 1.
- 2. When using with continuous and instantaneous rating (within 5 seconds or less) at or below 90V, follow the solid-line of derating curve below. Also, if the ambient temperature exceeds 40°C, follow the load factor that is gained by multiplying the load factor in Fig. 1 and the one in Figure 2.



| Drawn by | Checked by | Approved by | Drawing No.   | Sheet No.    |
|----------|------------|-------------|---------------|--------------|
| Mori     | Ishikawa   | arino       | 6124-01-4-521 | <b>5</b> / 8 |

Nipron Co., Ltd.

Model PC1U-300P-E2S

Created: May 31, 2006

# Current Rating Table for Load Connection Pins

The maximum current that can be drawn continuously from load connection pins is shown in the table below. However, the total current for each output shall not exceed the maximum output current specified in the output specification.

| Connector name | Pin# | Output (signal) name | Max. current per pip | Note                |
|----------------|------|----------------------|----------------------|---------------------|
|                | 1    | +3. 3V               | 6. 0A                |                     |
|                | 2    | +3, 3V               | 6. 0A                |                     |
|                | 3    | +5 V                 | 6. 0A                |                     |
|                | 4    | +5 V                 | 6. 0A                |                     |
|                | 5    | +5VSB                | 2. 5A                |                     |
|                | 6    | +12V2                | 6. 0A                |                     |
|                | 7    | COM                  | 6. OA                |                     |
|                | 8    | COM                  | 6. 0A                |                     |
| CUSTOM 1       | 9    | COM                  | 6. 0A                |                     |
| (Output 1)     | 10   | COM                  | 6. 0A                |                     |
|                | 1 1  | +3. 3V               | 6. 0A                |                     |
|                | 1 2  | +3. 3V               | 6. 0A                |                     |
|                | 13   | +5 V                 | 6. 0A                |                     |
|                | 14   | +5V                  | 6. 0A                |                     |
|                | 15   | +5 V                 | 6. 0A                |                     |
|                | 16   | +12V2                | 6. 0A                |                     |
|                | 1 7  | COM                  | 6. 0A                |                     |
|                | 18   | COM                  | 6. OA                |                     |
|                | 1 9  | СОМ                  | 6. 0A                |                     |
|                | 20   | COM                  | 6. OA                |                     |
|                | 1    | -12V                 | 0.8A                 |                     |
| CUSTOM 1       | 2    | PS_ON                | 10mA                 | Signal input        |
| (Output 2)     | 3    | PWR_OK               | 1 0 m A              | Signal output       |
|                | 4    | +3. 3V SENSING       | 10mA                 | +3.3V Sensing input |

|      |      |             | ,  |      |      | <u> </u>      | <u>y</u> |
|------|------|-------------|----|------|------|---------------|----------|
|      |      |             |    |      |      |               |          |
|      |      |             |    |      |      | (株)ニプロン       | √技情      |
|      |      |             |    |      |      |               |          |
| REV. | Date | Description | Ву | REV. | Date | Description t | Ву       |

| Drawn by | Checked by | Approved by | Drawing No.   | Sheet No.    |
|----------|------------|-------------|---------------|--------------|
| Mori     | Ishi kawa  | arino       | 6124-01-4-521 | <b>6</b> / 8 |

Nipron Co., Ltd.

Model PC1U-300P-E2S

Created: May 31, 2006

## Current Rating Table for Load Connection Pins

The maximum current that can be drawn continuously from load connection pins is shown in the table below. However, the total current for each output shall not exceed the maximum output current specified in the output specification.

| Connector name | Pin# | Output signal name | Max. current per pin | Note          |
|----------------|------|--------------------|----------------------|---------------|
|                | 1    | COM                | 6. 0A                |               |
|                | 2    | COM                | 6. 0A                |               |
|                | 3    | COM                | 6. 0A                |               |
| 1 2 V          | 4    | COM                | 6. 0A                |               |
| (Output 3)     | 5    | +12V1              | 6. OA                |               |
|                | 6    | +12V1              | 6. 0A                |               |
|                | 7    | +1 2 V 1           | 6. 0A                |               |
|                | 8    | +12V1              | 6. 0A                |               |
|                | 1    | +3. 3V             | 6. 0A                |               |
|                | 2    | +5 V               | 6. 0A                |               |
|                | 3    | COM                | 6. OA                |               |
|                | 4    | COM                | 6. 0A                |               |
| HD             | 5    | +12V2              | 6. 0A                |               |
| (Output 4)     | 6    | +3, 3V             | 6. 0A                |               |
|                | 7    | +5 V               | 6. OA                |               |
|                | 8    | COM                | 6. 0A                |               |
|                | 9    | COM                | 6. 0A                |               |
|                | 10   | +12V2              | 6. 0A                |               |
|                | 1    | FAN_M1             | 5mA                  | Signal output |
| FAN            | 2    | FAN_M2             | 5mA                  | Signal output |
| (Output 5) *1  | 3    | COM                | 10mA                 |               |

\*1. When using 3-pin COM of FAN (output 5), make sure that output current other than FAN\_M1 and FAN\_M2 does not flow through this pin.

|      |      |             |    |      |      | <u> </u>    | X   |   |
|------|------|-------------|----|------|------|-------------|-----|---|
|      |      |             |    |      |      | (株)ニプロン     | /・技 | 管 |
| REV. | Date | Description | Ву | REV. | Date | Description | Ву  |   |

| Drawn by | Checked by | Approved by | Drawing No.   | Sheet No.    |
|----------|------------|-------------|---------------|--------------|
| Mori     | Ishikawa   | arino       | 6124-01-4-521 | <b>7</b> / 8 |

Nipron Co., Ltd.

| Model PC1U-300P-E2S | Created: May 31, 2006 |
|---------------------|-----------------------|
|---------------------|-----------------------|

## Precaution before use

1. Grounding Warning

This power supply is designed and produced as Class I equipment. Make sure to properly ground the grounding terminal (Chassis) for safe operation.

This power supply is designed and produced as built-in equipment, and contains a high-voltage part. Make sure to securely install the power supply into equipment to prevent electric shock.

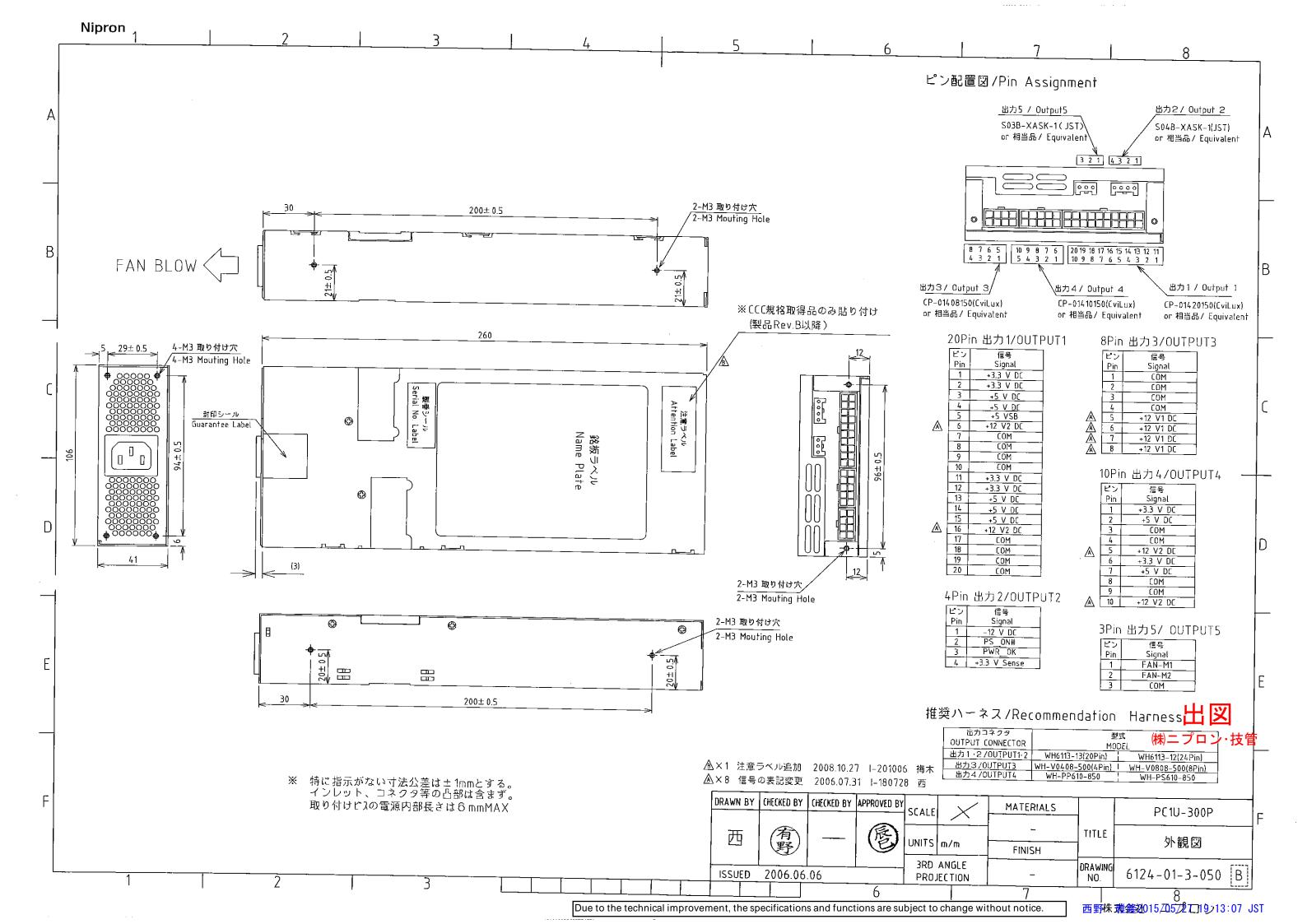
Prevent shorting output. If output is shorted, capacitors inside the power supply rapidly discharge and it may lead to fire and/or sparks, resulting in a serious accident. It also shortens the lifetime of the power supply.

4. Inrush current limiting circuit \( \sumetage \text{Caution} \)

Inrush prevention circuit is used to limit surge current into the smoothing capacitor when AC input is turned on. If input is reclosed before the specified reclosing interval after input failure, inrush prevention circuit may not work, and excessive surge current may damage the power supply. Make sure to take enough reclosing interval as specified.

5. Noise at power-on and power-off

A low frequency noise may be heard at AC input or power-on/off by PS\_ON signal; this noise is caused by low frequency vibration of chokes to regulate harmonic current in transition period. A similar noise may be observed while being energized (at operation and standby). These noises, however, do not cause any damage to the characteristics and lifetime of the power supply.


6. Handling of the output cable

Do not grab the output cables solely when you move or carry the power supply. Hold the body of the supply when you move or carry.

| L |      |      |             |    |      |      |                    |          |   |
|---|------|------|-------------|----|------|------|--------------------|----------|---|
|   |      |      |             |    |      |      |                    |          |   |
|   |      |      |             |    |      |      |                    | 义        |   |
|   |      |      |             |    |      |      | (姓) = プロ           | , , ;;;; | 监 |
|   | REV. | Date | Description | Ву | REV. | Date | Description (Thy ) | Ву       | F |

| Drawn by | Checked by | Approved by | Drawing No.   | Sheet No. |
|----------|------------|-------------|---------------|-----------|
| Mori     | Ishikawa   | arino       | 6124-01-4-521 | 8/8       |

Nipron Co., Ltd.

