

2021 June

Power Supply for Desktop PC HPCSA-1500P series

Large capacity ATX PSU suitable for GPU server HPCSA-1500P-E2S Reliable product built to provide

continuous service, 24/7/365

Peak: 1500W Continuous: 1200W

Large capacity PSU for GPU server suitable for deep learning and rendering

> Long life design with expected life of more than 10 years

High efficiency

HPCSA-1500P is designed to attain the highest efficiency with a high load factor of 50% to 100% and enables highly reliable and stable operation of GPU servers, constantly running under a high load, as in the application of deep learning.

controlled variable-speed fan.

When internal temperature of a power supply unit is low, fan speed is reduced to achieve low sound noise and save energy. In addition, operation settings are possible according to the usage environment and purpose, such as a semi-fanless mode in which the fan turns when the internal temperature rises, and a forced maximum turn mode in which the fan always turns at the maximum speed for cooling.

High efficiency of 94% typ. with 230V AC input attained

Silent design with the adoption of a temperature controlled variable-speed fan

Low noise

With the enhancement of noise filter circuits and optimization of component arrangement, the power supply unit clears VCCI Class B for conducted emissions. No need for an external noise filter, helping to save associated work and costs.

Conducted emission characteristics

High quality and high reliability manufacturing

The power supply is designed with an optimum component layout which is utilizing a unique thermal analysis/simulation, and produced in Japan. Also, in order to satisfy a variety of requirements for the power supply units from customers around the world, product evaluation tests are conducted thoroughly to find weaknesses. High reliability is achieved to enable long-term severe 24/7 operation at the rated power.

Output specification

		MAI	N/HD			12	2V			Ν	/AIN/H	D
	Output voltage	+3.3V	+5V	+12V1	+12V2	+12V3	+12V4	+12V5	+12V6	+12V7	-12V	+5VS
		25A	25A	24A	24A	24A	24A	24A	24A	24A	1A	3A
	Continuous max. current/power	Total 207.5W Total 1200W										15W
-		Total 1200W										
		30A	30A	32A	32A	32A	32A	32A	32A	32A	1.2A	4A
	Peak current/ power (within 5 s)	Total 207.5W Total 1500W										20W
						To	tal 1500	W				
	Minimum current	0A	0A	0A	0A	0A	0A	0A	0A	0A	0A	0A

ATX12VO-standard-compliant model

ATX12VO-standard-compliant model coming soon

Max. efficiency: 94% (An example measurement at 230V)

1

Specifications, design, and prices in the catalog are subject to change without prior notice. Do not copy. Copyright @ 2023 Nipron Co., Ltd.

ATX12VO is a new power supply standard regulating output voltage is only +12V and SB power supply. It simplif the system by making the power supplies simpler Devices requiring except +12V are powered by DC/DC converters embedded on motherhoards

Desktop PC Power Supply HPCSA-1500P-E2S

Features

1

- •Max. efficiency 94% (at 230VAC, an example measurement)
- •Double-sided PCB with plated through hole suitable for industrial use.

2 3 4 5 6

- •High efficiency achieved by the use of a synchronous rectifier and SiC diode
- •Min. load current is 0A for all outputs.
- •By building in the thermal-sensing variable speed fan,
- noise reduction can be realised. •Safety standards certified (IEC/UL/CSA62368)

Safety standards Reliability grade Function

 Input AC input 85-264V AC (Worldwide range, with PFC)

Output

•											
Output voltage	+3.3V	+5V	+12V1	+12V2	+12V3	+12V4	+12V5	+12V6	+12V7	-12V	+5VSB
Max auropt/	25A	25A	24A	1A	3A						
max power (coutinuous)	Total 207.5W Total 1200W										15W
	Total 1200W										
Dook ourront/	30A	30A	32A	1.2A	4A						
neak nower (within 5s)	Total 207.5W Total 1500W									20W	
peak power (within 05)	Total 1500W										
Min. current	0A		0A	0/	A	0A	0	A	0A		0A

Dimension

W×H×D (mm) 150×85×200

•Output connector (optional component)

Main 20+4pin	Main 24pin	Main 20pin	ат 101101	AUX 101	12V 4pin	12V 8pin	PCI-E 6pin	PCI-E 6+2pin	S-ATA	
								UQ.		ت ا

Ceneral Specification (Items are provided at normal temperature and humidity unless otherwise specified.)

	Items		Specifi	cation										Measurements conditions, etc.		
Γ	Rated Voltage		100-240	VAC (85	*-264VA	C)*1								Worldwide range *See <fig.1> Low input voltage derating below.</fig.1>		
≥	Input Frequency		50/60Hz											Frequency range 47-63Hz		
Ē	Efficiency		90% typ (100VAC), 91% typ (240VAC) *Characteristic data: Fig.5									At rated output				
۲, E	Power Factor		96% mir	n. (100VA	AC), 90%	min. (240	VAC) *C	haracteri	stic data:	Fig.6						
	Inrush Current*2		31A pea	k (100VA	AC), 75A	peak (24	OVAC) *C	haracteri	stic data	Fig.7				At rated output, cold start (25°C)		
	Input Current		13.3A ty	p (100VA	AC), 5.5A	typ (240)	VAC) *Ch	aracteris	tic data: I	Fig.5				At rated output		
	Rated Voltage		+3.3V	+5V	+12V1	+12V2	+12V3	+12V4	+12V5	+12V6	+12V7	-12V	+5VSB			
	Rated Current		8A	9A	13.5A	13.5A	13.5A	13.5A	13.5A	13.5A	12A	0.5A	1A	Reference value during the measurement of input/output characteristics		
	Max. Current / Po	ower	25A	25A	24A	24A	24A	24A	24A	24A	24A	1A	3A	Max. output power: 1200W		
			82.5W	125W	288W	288W	288W	288W	288W	288W	288W	12W	15\/	Refer to the derating condition		
			207.5V	207.5W max. 1200W max. 15W												
							12	200W ma	х.							
	Peak Current / P	ower	30A	30A	32A	32A	32A	32A	32A	32A	32A	1.2A	4A	Peak output power: 1500W		
			99W	150W	384W	384W	384W	384W	384W	384W	384W	14.4W	20W	lime: 5 sec or less		
Ĭ			207.50	V max.				150	0W max.					Duty ratio of repetitive load: 10% or less		
Ĕ					1		15	500W ma	х.							
	Total Valtage Accuracy (%)		0A	0A	0A	0A	0A	0A	A0	0A	0A	A0	0A			
	Total Voltage Accuracy (%)		±5 max.	±5 max.	±5 max.	±5 max.	±5 max.	±5 max.	±5 max.	±5 max.	±5 max.	±5 max.	±5 max.	The point of voltage measurement is the output connector		
														terminal on the power supply and the voltage drop due to		
	May Dipple Volt	Mary Dingle Matterns (11)		50 may	100	100	100	100	100	100	100	100 mov	50	The contact resistance of pared connector is not included.		
	Max Spike Volta	age (m\/p-p)	100 max	100 max	200 max	200 max	200 max	200 max	200 max	200 max	200 max	200 max	100 max	and connected into one at the edge 47uE electrolytic		
	IVIAX. Spike Volta	ge (mvp-p)	100 111ax.	100 max.	200 111ax	.200 max.	200 Шал.	200 Max.	200 max.	200 max.	200 max.	200 11184	100 111ax.	capacitor and 0.1µE ceramic capacitor are placed on		
														it and it is measured.*Characteristic data: Fig. 18		
\vdash	Over Current	OCP point (A)	31 min	31 min	33 min	33 min	33 min	33 min	33 min	33 min	33 min	Short n	rotection	Measurements done with no load excent for the voltage measurement		
	Protection	Method	All outputs	of +3.3V +	5V +12V1	+121/2 +121	/3 +12\/4 +	+12V5 +12V	/6 +12V7 a	nd -12V are	shut down	Hold down o	urrent limiting	All outputs shut down with a +5VSB short-circuit (automatic recovery)		
		Recovery	Reclosir	a AC inn	ut or sw	itching PS	3 ON# si	anal from	'H' to 'l '		chat donna	Automati	c recovery	Estimated input re-input interval at 100VAC: 10s or more, at		
P				.g / top	ai, 0. 011		_0.1 0.	gnainon						240VAC: 20s or more. (Reset time is not specified for +5VSB)		
1 de	Over Voltage	OVP point (V)	3.8-4.3	.8-4.3 5.7-7.0 13.4-15.6 - 5.7-7.5							5.7-7.5	,				
Ť	Protection	Method	All outpu	its of +3.	3V, +5V,	+12V1, +	12V2, +1	2V3, +12	V4, +12	/5, +12V6	δ,	-	All outputs			
1			+12V7 a	nd -12V	are shut	down.							shut down			
		Recovery	Reclosir	ng AC inp	ut, or sw	itching PS	6_ON# si	gnal from	'H' to 'L'			-	AC	Estimated input re-input interval at 100VAC: 10s or more, at		
													reclosing	240VAC: 20s or more. (Reset time is not specified for +5VSB)		
п	Operating Temp.	/	0-60°C*/	/10-90%										*Refer to <fig.3> Temperature derating below.</fig.3>		
₹	Humidity													There shall be no condensation		
l B	Storage Temp./H	lumidity	-20-70°0	-20-70°C/10-95%								There shall be no condensation				
l en	Vibration		Accelera	ation amp	litude: 20	G (10-55⊦	lz), Swee	ep cycles:	10 times	in the X-	, Y-, and	Z-axes		Follow JIS-C-60068-2-6 at no operation		
Ê	Mechanical Shoo	ж	Lift one	ift one bottom edge up to 50mm and let it fall. Number of bumps: 3 each of 4 edges								Follow JIS-C-60068-2-31 at no operation				
nsu	Dielectric Strengt	th	AC inpu	t - FG/DC	coutput:	1500VAC	for 1 mir	nute						Cut-off current 10mA		
latio	Insulation Resista	ance	AC inpu	AC input - FG/DC output: 50MΩ min.									At 500VDC			
1 _A	Leakage Current	an ite a	0.5mA n	nax. (100	VAC) /1.0	JmA max.	(200VA0	1.2mA (ز	max. (24	iuvac) *(Jharacter	istic data	: ⊢ig. 8	IEC62368 compliant		
	Line Noise Immu	riity	±2000V	(puise w	mode w	ith Positiv	o, cycle p e/Negativ	eriod of 3	ບ ເວ 100h / for 10 ກ	⊐Z, ninutee\				There shall be no fluctuation of DC output or malfunction.		
	Electrostatic Diac	harde	ENI6100	0_1_2 ~~	mpliant		Griveyall	vo polarity		mutesj						
	Padiated Padia Erea	unnav Eloctromagnatic Eiold	EN6100	0.4.3 cor	mpliant											
	Fast Transient B	uret	EN6100	0-4-3 001	npliant											
E	Lightning Surge		EN6100	0-4-5 cor	npliant											
	Radio Frequency	Conducted Immunity	EN6100	0-4-6 cor	npliant											
	Power-Frequency	Magnetic Field Immunity	EN6100	0-4-8 cor	npliant											
	Voltage dips/Reg	ulation	EN6100	0-4-11 co	mpliant											
	Conducted Emm	ision	VCCI-B.	FCC-B,	CISPR32	2-B, EN5	5032-B co	ompliant *	Characte	eristic dat	a: Fig.9,	10		Measured by single unit		
	Harmonic Currer	nt Regulations	IEC6100)0-3-2 cla	ass A con	npliant					<u> </u>			At rated input/output		
	Safety Standards	3	UL62368	, CSA6236	68-1 (c-UL) certified,	EN62368,	PSE (ordir	nance clau	ise 2) com	pliant, CE	Marking (L	VD,EMC)			
	Cooling System		Forced a	air cooling	g: therma	I-sensing	variable	speed far	n embed	ded				The speed changes with the temperature and the load condition		
_	Output Groundin	g	Connect	ted chass	sis (FG)											
₽	Output Hold-up T	lime	AC cut-o	$off \rightarrow PW$	R_OK ho	olds up 16	Sms min.	*Charact	eristic da	ta: Fig.15				At rated output		
ers	Reliability Grade		FA (Indu	istrial equ	uipment g	grade to u	se double	e-sided P	CB with	plated thr	ough hol	e)		Following our standard		
	MTBF		70,000 H	l min										Based on EIAJ RCR-9102		
	Weight		2.6 kg ty	γp												
	Warranty		Three yea	ars after de	elivery: If a	ny defects	belong to	us, the def	ective unit	shall be re	paired or r	eplaced at	t our cost.	Except for errors caused by operation not specified in this specification.		
+4 1																

*2 Inrush current, 100µs or less, into X-capacitors of input noise filter and transient current after PS_ON=L input are not specified here.

Signal Input/Output Specification (Items are provided at normal temperature and humidity unless otherwise specified.)

Output ON/OFF control signal (PS_ON#) +3.3V, +5V, +12V1 to 7, -12V outputs shutdown with 'H' or 'OPEN' input. (PS_ON re-entry interval 10s more) Input ŝ +3.3V SENSE *1 The input terminal to detect the voltage of +3.3V output; by connecting to the load terminal, only the line drop of the + side of the output cable is compensated. na Fan control signal The control terminal of fan motor; the fan motor is forcibly rotated at full speed (FAN_C) at 'L' input. Normal output signal (PWR_OK) 'H' signal is delivered at normal output. (detection delay time: 100 to 500ms) Output Signal Fan monitoring signal Two cycle pulses per one rotation of the fan motor are delivered. (Fan_M) The signal remains 'L' or 'OPEN' when the fan stops caused by any failure or malfunction. One rotation Signal Circuit (PS ON#) FAN_C signal input circuit Output (PWR OK) (FAN M) Input Power supply side +5\ t Signal Inside Power supply side Outside Outside +5VSB Inside of Sigr power supply Q1 OFF 4.7kΩ I_{in} $I_{in} \leq 10 \text{mA}$ ವ Max. 12\ 1kΩ typ Circuit $V_0 \leq 6V$ Circuit Signal Signal output termin output termina 4 Q1 ON V. ← 5mA max __5mA max V₀≦0.8V I ≦1.6mA 5.25V max 5.25V max V $V_0 \leq 0.8V$ h h π π th ('L' <0.4V) ('L' <0.4V) ('L' ≦ 0.8V,2.0V ≦ 'H')

*1 Connect the +3.3 V SENSE signal to +3.3 at the load end because +3.3 V output may not be satisfied the specification.

Internal structure

Block Diagram

How to Switch the Fan Operation Mode

Options (Sold separately)

Detachable output harness	
Model	Length and type of connector
Main power cable MAIN	
WH-M2022-500	500±10 20Pin
WH-M2022-300	300±10 20Pin
WH-M2422-500	500±15 24Pin
12V power cable 12V	
WH-V0808-500	500±15 ► 📑 12V 8Pin
WH-V0408-500	500±15 ₪ 12V 4Pin
WH-VG208-500	500±15 E POLIS CO
WH-VV208-500-02	500±10 PCI-E 6P
WH-VG208-500-02	500±10 E PCI-E 6P
WH-G0808-500	500±10 PCI-E 6+2
WH-GG208-500	500±10 PCI-E 6P
WH-GG208-500-02	500±10 PCI-E 6+2
HD power cable HD	
WH-PP610-850	550±15 150±15 15
WH-PS610-850	550±15 150±15 10 10 10
WH-PS710-850	Q 550±15 150±15 15
	850±15
WH-PS810-1000	9 550±15 150±15 15
SIG cable SIG	
WH-S0610-500	00±15 00±15 ► SIG-1
WH-S0610-500-01	0 500±15 ► 🔄 SIG-2
WH-S0310-500	500±15

Options (Sold separately)

Cable			
Photos	Model	Category	Des
Q	WH6216-01	AC power cord	125 [PS

Parts			
Photos	Model	Category	De
E.	ACC6212	AC power cord retention clamp	AC

1 2 3

scriptior

5VAC 15V (tracking resistance type) SE]

scription

power cord (WH6216-01) retention clamp

Characteristics Data (Examples of actual measurement)

• Fig.8 Leakage (Current									
Input : 100, 200, 240	AC									
	Load : Kated load and Min. load									
	Rated load	Min. load								
	0.20mA	0.22mA								
100V AC	0.2011A	0.22IIIA								
100V AC 200V AC	0.45mA	0.46mA								
100V AC 200V AC 240V AC	0.45mA 0.54mA	0.46mA								

Characteristics Data (Examples of actual measurement)

• Fig.15 Ou	tput Hold-up Time		Load: Rated (65°C: 70% load)							
	PWR_OK: the pont that PWR Output voltage: the point that	R_OK signal "L" is deliv t output voltage exept 5	vered. SVSB fails down to 95%.							
Hold-up time										
Temp.	Input voltage	PWR_OK	Output voltage							
5°C	100V AC	17.42ms	21.50ms							
-50	240V AC	17.96ms	22.08ms							
25%0	100V AC	18.36ms	22.62ms							
25 0	240V AC	19.72ms	23.78ms							
45%0	100V AC	18.78ms	22.90ms							
45 C	240V AC	20.02ms	24.08ms							
0590	100V AC	24.28ms	30.32ms							
(70% load)	240V AC	25.68ms	31.78ms							

Specifications, design, and prices in the catalog are subject to change without prior notice. Do not copy. Copyright © 2023 Nipron Co., Ltd.

Fig.18 Ripple and Spike Voltage												
											Load:	Rated
	+3	.3V	+{	5V	+12	2V1	+12	2V2	+12	2V3	+12	2V4
AC Input voltage	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)
100V	19.6	67.8	13.1	67.8	9.3	54.9	13.6	65.6	28.3	52.6	19.9	66.5
240V	17.7	49.0	12.1	55.1	8.3	47.9	11.2	51.5	15.2	55.8	12.7	49.8
	+12V5		+12	2V6	+12	2V7	-12	2V	+5\	/SB	1	
AC Input voltage	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)	Ripple (mV)	Noise (mV)		
100V	13.6	65.5	28.6	53.1	20.0	66.8	16.5	51.8	15.6	57.6	1	
240V	11.2	51.4	15.4	56.4	12.8	50.0	17.4	48.7	17.4	79.3	1	
											,	
	AC Input voltage 100V 240V AC Input 100V 240V	g.18 Rip AC Input Notage Ripple (mV) 100V 19.6 240V 17.7 AC Input Ripple (mV) 100V 13.6 240V 11.2	AC Input AC Input Woltage (mV) 100V 19.6 67.8 240V 17.7 49.0 AC Input Ripple Noise (mV) 100V 19.6 67.8 240V 17.7 49.0 AC Input Ripple Noise (mV) 100V 13.6 65.5 240V 11.2 51.4	AC Input voltage +3.3V Ripple +4 Noise AC Input voltage +3.3V Ripple +6 Noise 100V 19.6 67.8 13.1 240V 17.7 49.0 12.1 AC Input Ripple Noise Ripple Ripple Noise 100V 13.6 65.5 28.6 240V 11.2 51.4 15.4	AC Input AC Input Voltage (MV) (MV) (MV) (MV) (MV) (MV) (MV) (MV)	A.C Input Woltage +3.3V +5V +112 Woltage A.C Input Woltage Ripple Ripple Noise Noise Ripple Woltage Noise Ripple Noise Woltage Ripple Woltage Noise Ripple Noise Ripple Noise Ripple Noise Ripple Noise Ripple Ripple Ripple Noise Ripple Ripple Ripple Ripple Ripple Ripple Ripple Ripple	A.C. Input Woltage +5.V +12V1 A.C. Input Woltage Highple (MV) Noise (MV) Ripple (MV) <	A.C Input Wolfage +3.3V +5V +12V1 +112V1 AC Input Wolfage Ripple Noise Ripple Noise Ripple Noise Ripple Molese (mV) (mV) (mV) (mV) (mV) (mV) 100V 19.6 67.8 13.1 67.8 9.3 54.9 13.6 240V 17.7 49.0 12.1 55.1 8.3 47.9 11.2 AC Input Wolfage H12V5 +12V6 +12V7 -1.2 Molese Ripple Noise Ripple Noise Ripple Wolfage MV) (mV) (mV) (mV) (mV) (mV) 100V 13.6 65.5 28.6 53.1 20.0 66.8 16.5 240V 11.2 51.4 15.4 56.4 12.8 50.0 17.4	A.C Input Woltage +3.3V +5V +12V1 +12V2 AC Input Woltage Ripple Ripple Noise Ripple Noise	a.18 Ripple and Spike Voltage AC Input voltage $+3.3V$ $+5V$ $+12V1$ $+12V2$ $+112V2$ AC Input voltage Ripple Noise Ripple Noise Ripple Noise Ripple Moles Wolf (mV) (mV) (mV) (mV) (mV) (mV) 100V 19.6 67.8 13.1 67.8 9.3 54.9 13.6 65.6 28.3 240V 17.7 49.0 12.1 55.1 8.3 47.9 11.2 51.5 15.2 AC Input woltage Ripple Movise Ripple Noise Ripple Noise Ripple Noise Ripple Noise Ripple Noise Ripple Movise Noise Ripple Noise Ripple Noise	A. Ripple and Spike Voltage AC Input voltage $+3.3V$ $+5V$ $+12V1$ $+12V2$ $+12V3$ AC Input voltage Ripple (W) Noise Ripple Noise	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

